On the extendability of particular classes of constant dimension codes
نویسندگان
چکیده
In classical coding theory, different types of extendability results of codes are known. A classical example is the result stating that every (4, q − 1, 3)-code over an alphabet of order q is extendable to a (4, q, 3)-code. A constant dimension subspace code is a set of (k− 1)-spaces in the projective space PG(n− 1, q), which pairwise intersect in subspaces of dimension upper bounded by a specific parameter. The theoretical upper bound on the sizes of these constant dimension subspace codes is given by the Johnson bound. This Johnson bound relies on the upper bound on the size of partial s-spreads, i.e., sets of pairwise disjoint s-spaces, in a projective space PG(N, q). When N +1 ≡ 0 (mod s+1), it is possible to partition PG(N, q) into s-spaces, also called s-spreads of PG(N, q). In the finite geometry research, extendability results on large partial s-spreads to s-spreads in PG(N, q) are known when N + 1 ≡ 0 (mod s + 1). This motivates the study to determine similar extendability results on constant dimension subspace codes whose size is very close to the Johnson bound. By developing geometrical arguments, avoiding having to rely on extendability results on partial s-spreads, such extendability results for constant dimension subspace codes are presented.
منابع مشابه
Cyclic Orbit Codes with the Normalizer of a Singer Subgroup
An algebraic construction for constant dimension subspace codes is called orbit code. It arises as the orbits under the action of a subgroup of the general linear group on subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the general linear group has investigated recently. In this paper, we consider the normalizer of a Singer subgroup of the general linear group a...
متن کاملIsotropic Constant Dimension Subspace Codes
In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...
متن کاملNecessary and Sufficient Conditions for the Extendability of Ternary Linear Codes
We give the necessary and sufficient conditions for the extendability of ternary linear codes of dimension k ≥ 5 with minimum distance d ≡ 1 or 2 (mod 3) from a geometrical point of view.
متن کاملIsometry and automorphisms of constant dimension codes
We define linear and semilinear isometry for general subspace codes, used for random network coding. Furthermore, some results on isometry classes and automorphism groups of known constant dimension code constructions are derived.
متن کاملConstructions of cyclic constant dimension codes
Subspace codes and particularly constant dimension codes have attracted much attention in recent years due to their applications in random network coding. As a particular subclass of subspace codes, cyclic subspace codes have additional properties that can be applied efficiently in encoding and decoding algorithms. It is desirable to find cyclic constant dimension codes such that both the code ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 79 شماره
صفحات -
تاریخ انتشار 2016